Higher Twist Scaling Violations

Michael Glatzmaier

In collaboration with
Michael Ramsey-Musolf, Sonny Mantry

Jefferson Lab - HiX 10/13/10

Outline

* Historical Overview of Scaling Violations in QCD
* Theoretical Foundations
* Perturbative Analysis of Twist-4
* Preliminary Results
* Summary

QCD and Nucleon Structure

* SLAC-MIT experiments discovered the proton is a "loose assemblage" of charge.
* Data exhibited Bjorken Scaling.
* Later experiments found deviations to scaling with a logarithmic dependence on $\mathrm{Q}^{\wedge} 2$.

$$
\frac{d}{d \log Q} f_{f}(x, Q)=\frac{\alpha_{s}\left(Q^{2}\right)}{\pi} \int_{x}^{1} \frac{d z}{z}\left\{P_{q \leftarrow q}(z) f_{f}\left(\frac{x}{z}, Q\right)+P_{q \leftarrow g}(z) f_{g}\left(\frac{x}{z}, Q\right)\right\}
$$

* The parton model gives us an intuitive picture of logarithmic scaling violations!

- MRST NNLO
........... MRST NNLO with
Barbieri Target
Mass Corrections

Leading Moment Data
 (Liang et al. JLAB Hall C - CLAS Collaboration) (E94-110)

Cornwall-Norton Moments

$$
\begin{aligned}
& F_{2}^{\mathrm{EL}}=\frac{\left(G_{E}^{2}+\tau G_{M}^{2}\right) \delta(x-1)}{1+\tau} \\
& F_{1}^{\mathrm{EL}}=G_{M}^{2} \delta(x-1) \quad{ }_{\tau=\frac{q^{2}}{4 M_{p}^{2}}} \\
& F_{L}^{\mathrm{EL}}=G_{E}^{2} \delta(x-1)
\end{aligned}
$$

Elastic Contributions

Cornwall-Norton Moments

* Bjorken-x weighted integral

$$
M_{n}\left(Q^{2}\right)=\int_{0}^{1} d x_{B} \quad x_{B}^{n-2} F_{2}\left(x_{B}, Q^{2}\right)
$$

*Which can be analyzed in terms of the operator product expansion

* De Rujula, Georgi \& Politzer originally explained Duality by placing bounds on the higher-twist matrix elements Ann. of Phy 353 (315-553) 1977

Cancellation of Higher Twist?
 (Liang et al. JLAB Hall C - CLAS Collaboration)

$M_{n}\left(Q^{2}\right)=\eta_{n}\left(Q^{2}\right)+a_{n}^{(4)}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right]^{\gamma_{n}^{(4)}} \frac{\mu^{2}}{Q^{2}}+a_{n}^{(6)}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right]^{\gamma_{n}^{(6)}} \frac{\mu^{4}}{Q^{4}}$

Cancellation of Higher Twist?
 (Liang et al. JLAB Hall C - CLAS Collaboration)

$M_{n}\left(Q^{2}\right)=\eta_{n}\left(Q^{2}\right)+a_{n}^{(4)}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right]^{\gamma_{n}^{(4)}} \frac{\mu^{2}}{Q^{2}}+a_{n}^{(6)}\left[\frac{\alpha_{s}\left(Q^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right]^{\gamma_{n}^{(6)}} \frac{\mu^{4}}{Q^{4}}$

Many Operators Contribute!

$\Delta \cdot Q_{n}^{1(k, \ell)}=g \bar{\psi}_{R} \overleftarrow{d}^{\ell} \vec{d}^{k} \psi_{R} \bar{\psi}_{R} \vec{d}^{n-2-k-\ell} \psi_{R}$,
$\Delta \cdot Q_{n}^{2(k, \ell)}=g \bar{\psi}_{R} \tau_{a} \overleftarrow{d}^{\ell} \vec{d}^{k} \psi_{R} \bar{\psi}_{R} \vec{d}^{n-2-k-\ell} \tau_{a} \psi_{R}$,
$\Delta \cdot Q_{n}^{3(k, \ell)}=g \bar{\psi}_{R} \overleftarrow{d}^{\ell} \vec{d}^{k} \psi_{R} \bar{\psi}_{L} \vec{d}^{n-2-k-\ell} \psi_{L}$,
$\Delta \cdot Q_{n}^{4(k, \ell)}=g \bar{\psi}_{R} \tau_{a} \overleftarrow{d}^{\ell} \vec{d}^{k} \psi_{R} \bar{\psi}_{L} \vec{d}^{n-2-k-\ell} \tau_{a} \psi_{L}$,
$\Delta \cdot Q_{n}^{5(k, \ell)}=g \bar{\psi}_{L} \overleftarrow{d}^{\ell} \vec{d}^{k} \psi_{L} \bar{\psi}_{L} \vec{d}^{n-2-k-\ell} \psi_{L}$,
$\Delta \cdot Q_{n}^{6(k, \ell)}=g \bar{\psi}_{L} \tau_{a} \overleftarrow{d}^{\ell} \vec{d}^{k} \psi_{L} \bar{\psi}_{L} \vec{d}^{n-2-k-\ell} \tau_{a} \psi_{L}$,
$\Delta \cdot Q_{n}^{7(k, \ell)}=\bar{\psi} \overleftarrow{d}^{\xi} \gamma_{5} \vec{d}^{n-1-k} \psi$,
$\Delta \cdot Q_{n}^{8(k, \ell)}=i \bar{\psi} \overleftarrow{d}^{k} \vec{d}^{n-1-k} \psi$,
$\Delta \cdot O_{n}^{G 1 a(k, \ell)}=\operatorname{Tr}\left[f_{\alpha} \vec{d}^{n-4-k-\ell} f^{\alpha}\right] \operatorname{Tr}\left[\vec{d}^{k} f_{\beta} \vec{d}^{\ell} f^{\beta}\right]$
Twist 4

$$
\Delta \cdot O_{n}^{G 3}=\operatorname{Tr}\left[G^{\alpha \beta} \vec{d}^{n} G_{\alpha \beta}\right]
$$

Summary of Goals

* Complete a detailed study of the RG evolution of twist-4 operators, reducing the number of fit parameters for higher twist effects in DIS.
* Through the combination of data and lattice simulations we hope to provide a good first step toward a systematic program of analyzing higher twist correlations in the nucleon.
* More generally, a better understanding of HT can inform electroweak observables. Nuclear effects must be well understood before claims of new physics can be made.

PVDIS - Electron/Deuteron Asymmetry

$$
\mathcal{A}_{\mathrm{RL}}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

*The focus has shifted from the SM WNC theory to detecting hints of physics beyond the SM

* 12 GeV program to begin at JLab in 2014
- Qweak
(W.T.H. Van Oers)
- SOLID, 6 GeV , and 12, GeV experiments

SOLID

* SOLID plans to measure the asymmetry at a percent level over a wide kinematic range.

Projected data with errors for SOLID
(P. Souder)

PVDIS - Electron/Deuteron Asymmetry

$$
\mathcal{A}_{\mathrm{RL}}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}}
$$

* Precision PVDIS must control hadronic uncertainties: TMC, CSV, sea quark distributions, higher twist effects.
* HT effects in the first term of the asymmetry are given in terms of a single four quark matrix element!
(Cahn-Gilman; Bjorken, Wolfenstein; Hobbs, Melnitchouk; Mantry, Musolf, Sacco)

$$
\mathcal{O}_{u d}^{\mu \nu}(x)=\frac{1}{2}\left[\bar{u}(x) \gamma^{\mu} u(x) d(0) \gamma^{\nu} d(0)+(u \leftrightarrow d)\right]
$$

* The RG evolution of four-quark operators facilitates an extraction of higher twist matrix elements.

Outline

* Historical Overview of Scaling Violations in QCD
* Theoretical Foundations
* Perturbative Analysis of Twist-4
* Preliminary Results
* Summary

$\underline{\text { Operator Product Expansion wilom, Phys Ree } 179.9999}$

Higher Twist

Twist-2

Quark-gluon correlation

Quark-quark correlation

Outline

* Historical Overview of Scaling Violations in QCD
* Theoretical Foundations
* Perturbative Analysis of Twist-4
* Preliminary Results
* Summary

The Operator BasiS R.L. Jaffe \& M. Soldate - Phys. Rev. D V26 No. 1

* 12 Operators appear at twist-4, which can be divided into three groups:

4-Quark $\quad \triangle \cdot Q_{n}^{1(k, l)}=g\left[\bar{\psi}_{R} \not \overleftarrow{d}^{l} \vec{d}^{k} \psi_{R}\right]\left[\bar{\psi}_{R} \not \vec{d}^{n-2-k-l} \psi_{R}\right]$
2-Quark $\triangle \cdot Q_{n}^{8(k)}=i \bar{\psi} \overleftarrow{d}^{k} f \vec{d}^{n-1-k} \psi \longrightarrow$
Gluonic $\triangle \cdot G_{n}^{(k, l)}=\operatorname{Tr}\left[f_{\alpha} \vec{d}^{n-k-l} f^{\alpha} \vec{d}^{k} f_{\beta} \vec{d}^{l} f^{\beta}\right]$

The Anomalous Dimension Matrix

* The anomalous dimension takes the following form

$$
\gamma \sim\left(\begin{array}{cc}
\text { Quark } & \text { Quark } \rightarrow \text { Glue } \\
\text { Glue } \rightarrow \text { Quark } & \text { Glue }
\end{array}\right)
$$

* The quark sector can be further decomposed

$$
\gamma_{\text {Quark }} \sim\left(\begin{array}{cc}
4 Q \rightarrow 4 Q & \mathbf{0} \\
4 Q \rightarrow 2 Q & 2 Q \rightarrow 2 Q
\end{array}\right)_{\mathrm{f}, \mathrm{I}} \underbrace{\text { Pravorlsospin }}
$$

SU(3) - Flavor Decomposition

* Each current sits in the octet representation of SU(3)-flavor.

$$
J^{\mu}(x)=\bar{\psi}(x) \gamma^{\mu} \frac{1}{2}\left(\lambda_{f}^{3}+\frac{1}{\sqrt{3}} \lambda_{f}^{8}\right) \psi(x) \quad \text { for } \quad S U(3)_{f}
$$

* The direct product of these octets contains multiple representations. ($\mathrm{I} 3=\mathrm{Y}=0$)

$$
8 \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8_{1} \oplus 8_{2} \oplus 1
$$

Flavor Singlet Sector

$$
\gamma \sim\left(\begin{array}{cc}
\text { Quark } & \text { Quark } \rightarrow \text { Glue } \\
\text { Glue } \rightarrow \text { Quark } & \text { Glue }
\end{array}\right)
$$

* A work in progress....

$$
\gamma_{\mathrm{Glue}} \sim\left(\begin{array}{ll}
G_{1} \rightarrow G_{1} & G_{1} \rightarrow G_{2} \\
G_{2} \rightarrow G_{1} & G_{2} \rightarrow G_{2}
\end{array}\right)_{\mathrm{f}, \mathrm{I}}
$$

Four Quark Sector: 27-Plet canimotoms

$$
\tilde{Q}_{27, \mathrm{I}} \sim \sum_{f} C_{f}\left(\bar{\psi}_{\mathrm{L}, \mathrm{R}} \Gamma_{\mu} \psi_{\mathrm{L}, \mathrm{R}}\right)_{f}\left(\bar{\psi}_{\mathrm{L}, \mathrm{R}} \Gamma_{\nu} \psi_{\mathrm{L}, \mathrm{R}}\right)_{f}
$$

* Large, but sparse matrix:

Outline

* Historical Overview of Scaling Violations in QCD
* Theoretical Foundations
* Perturbative Analysis of Twist-4
* Preliminary Results
* Summary

Running of $27, \mathrm{I}=1$ Prelininary

* As a simplistic example, consider just the exponential factor

$$
M_{n}\left(Q^{2}\right) \approx \sum_{i}\left(\frac{1}{Q^{2}}\right)^{\frac{r-2}{2}} \tilde{c}_{j}^{n}\left(Q^{2}, g(t), \mu\right) \exp \left[-\int_{0}^{t} \gamma_{i j}^{(n)}\left(\bar{g}\left(t^{\prime}\right)\right) d t^{\prime}\right] A_{i}^{n}
$$

* Diagonalize gamma, giving a linear combination of 6 operators and 6 eigenvalues

$$
\frac{C_{i}\left(Q^{2}\right) \mathcal{O}_{i}\left(Q^{2}\right)}{C_{i}\left(Q_{0}^{2}\right) \mathcal{O}_{i}\left(Q_{0}^{2}\right)} \sim \exp \left[-\int_{0}^{t} \gamma_{j}\left(\bar{g}\left(t^{\prime}\right)\right) d t^{\prime}\right]
$$

Running of Wilson-Coefficients Preliminary

$$
\begin{aligned}
& \frac{C_{i}\left(Q^{2}\right) \mathcal{O}_{i}\left(Q^{2}\right)}{C_{i}\left(Q_{0}^{2}\right) \mathcal{O}_{i}\left(Q_{0}^{2}\right)} \\
& M_{n}\left(Q^{2}\right) \approx \sum_{i}\left(\frac{1}{Q^{2}}\right)^{\frac{\tau-2}{2}} \tilde{c}_{j}^{n}\left(Q^{2}, g(t), \mu\right) \exp \left[-\int_{0}^{t} \gamma_{i j}^{(n)}\left(\bar{g}\left(t^{\prime}\right)\right) d t^{\prime}\right] A_{i}^{n} \\
& \frac{C_{i}\left(Q^{2}\right) \mathcal{O}_{i}\left(Q^{2}\right)}{C_{i}\left(Q_{0}^{2}\right) \mathcal{O}_{i}\left(Q_{0}^{2}\right)} \sim \exp \left[-\int_{0}^{t} \gamma_{j}\left(\bar{g}\left(t^{\prime}\right)\right) d t^{\prime}\right]
\end{aligned}
$$

Outlook

* Complete the singlet sector of the twist-4 anomalous dimension.
* Include tree level Wilson Coefficients for the full anomalous dimension.
* Provide a detailed analysis of the RG evolution of twist four.
* In the future, we hope to extend this analysis to higher moments.
* Can be done using non-local operator renormalization technique Balitsky, Braun et al. Nuc Phys B 807, 2009.

Summary

* We hope that these calculations combined with lattice estimates of twist four matrix elements will provide a complete program for systematic study of higher twist.
* RG analysis of twist four can aid in extractions of twist-4 matrix elements.
* The higher moments, sensitive to higher x, are accessible using nonlocal operator renormalization.
* Please stay tuned for future results!

Thank you!

Backup Slides

Quark Mixing: Flavor Octet

* The $\mathrm{SU}(3)$-flavor reduction provides a nice way to organize the quark mixings.

$$
\gamma_{\text {Quark }} \sim\left(\begin{array}{cc}
4 Q \rightarrow 4 Q & \mathbf{0} \\
2 Q \rightarrow 4 Q & 2 Q \rightarrow 2 Q
\end{array}\right)_{\mathrm{f}, \mathrm{I}}
$$

*Mixings among two / four quark operators are more involved.

