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QCD and Nucleon Structure

✤ SLAC-MIT experiments discovered the proton is a “loose assemblage” of charge.

✤ Data exhibited Bjorken Scaling.

✤ Later experiments found deviations to scaling with a logarithmic dependence on Q^2.

II. LEPTON–NUCLEON SCATTERING: KINEMATICS AND CROSS SECTIONS

In this section we present the kinematics relevant for inclusive lepton–nucleon scattering,
and introduce notations and definitions for cross sections, structure functions, and their
moments, both for unpolarized and polarized scattering. These can be found in standard
texts [8,9], but the most relevant formulas are provided here for completeness.

A. Kinematics

The process which we focus on mainly in this report is inclusive scattering of an electron
(the case of muon or neutrino scattering is similar) from a nucleon (or another hadronic or
nuclear) target, eN → e′X, where X represents the inclusive hadronic final state. In the
target rest frame, the incident electron with energy E scatters from the target through an
angle θ, with a recoil energy E ′. In the one-photon (or Born) approximation, as illustrated
in Fig. 2, the scattering takes place via the exchange of a virtual photon (or W± or Z boson
in neutrino scattering) with energy

ν = E − E ′ , (1)

and momentum #q.

e (k’)e (k)

N (p)

(q)

X

!"

FIG. 2. Inclusive lepton–nucleon scattering in the one-photon exchange approximation. The
four-momenta of the particles are given in parentheses.

Throughout we use natural units, h̄ = c = 1, so that momenta and masses are expressed
in units of GeV (rather than GeV/c or GeV/c2). The virtuality of the photon is then given
by q2 = ν2 − #q 2. Since the photon is spacelike, it is often more convenient to work with the
positive quantity Q2 ≡ −q2, which is related to the electron energies and scattering angle
by

8

x =
Q2

2Mν
, ν = E − E′

d2σ

dΩdE′ = σMott

(
2
M

F1(x, Q2)tan2 θ

2
+

1
ν

F2(x, Q2)
)
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Figure 13: Summary of measurements of F2 [66]. For better visibility, the results for different values of
x were multiplied with the given factors of 2i.

5.3 The running αs from jet production in DIS

The increase of momentum transfer Q2 at HERA also allowed to see and analyse the jet structure in
deep inelasting scattering processes. Here, similar as in e+e− annihilations, production of multijet final
states is predicted in QCD to NLO, and allows to determine αs in a large range of energy scales.

Inclusive as well as differential jet production rates were studied in the energy range of Q2 ∼ 10
up to 10000 GeV2, using similar jet definitions and algorithms as in e+e− annihilation. In leading
order αs, 2 + 1 jet events in deep inelastic ep scattering arise from photon-gluon fusion and from QCD
Compton processes. The term ‘2 + 1 jet’ denotes events where two resolved jets can be identified at
large momentum transfer, in addition to the beam jet from the remnant of the incoming proton.

A recent summary of αs determinations from the two HERA experiments H1 and ZEUS is given
in figure 16 [67]. Here, the transverse jet energy Ejet

T was chosen as the relevant energy scale. Both
experiments have determined αs at several different values of Ejet

T , and the summary of all these results
clearly demonstrates that αs runs as predicted by QCD.

A combination of these results [67] will be included in the overall summary of αs determinations,
which is presented in the following section.

24

F2(x, Q2) = x
∑

q

e2
q(q(x, Q2) + q̄(x, Q2))

Perturbative QCD ZEUS Collab., S. Chekanov et al., Phys. Rev. D 70 (2004) 052001
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✤ The parton model gives us an intuitive picture of logarithmic scaling 
violations!
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Beyond the Parton Model Y.Liang et al. JLAB Hall C (E94-110)

FIG. 25. The purely transverse proton structure function 2xF p
1 , measured in the resonance

region (triangles) as a function of x, compared with existing high-precision DIS measurements
from SLAC (squares). The curves are from Alekhin (dashed) [70], and from MRST [67], both at

NNLO, with (dotted) and without (solid) target mass effects included, as described in the text.
The prominent resonance regions (∆, S11, F15) are indicated by the arrows.
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Leading Moment Data
(Liang et al. JLAB Hall C - CLAS Collaboration) (E94-110)

τ =
q2

4M2
p

FEL
1 = G2

Mδ(x− 1)

FEL
L = G2

Eδ(x− 1)

FEL
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(G2
E + τG2

M )δ(x− 1)
1 + τ

Elastic Contributions
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Cornwall-Norton Moments

Mn(Q2) =
∫ 1

0
dxB xn−2

B F2(xB , Q2)

Mn(Q2, g, µ) ≈
∑

k

(
1

Q2

) τ−2
2

c̃n
k (g, µ) A(n)

k

Twist

Non-
Perturbative

Matrix Element

Wilson Coefficient

✤ De Rujula, Georgi & Politzer originally explained Duality by placing bounds 
on the higher-twist matrix elements Ann. of Phy 353 (315-353) 1977

✤ Bjorken-x weighted integral

✤ Which can be analyzed in terms of the operator product expansion
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Cancellation of Higher Twist?
(Liang et al. JLAB Hall C - CLAS Collaboration) 17
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FIG. 11: Results of the twist analysis. The open squares represent the Nachtman moments obtained in this analysis. The
solid line is the fit to the moments using Eq. 37 with the parameters listed in Table III. The twist-2, twist-4, twist-6 and higher
twist (HT) contributions to the fit are indicated. The twist-2 contribution was calculated using Eq. 39.
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τaψL,

∆ · Q7(k,!)
n = ψ̄ d

←k∗ γ5d
→n−1−k

ψ,

∆ · Q8(k,!)
n = iψ̄ d

←k

d
→n−1−k

ψ,

∆ · OG1a(k,!)
n = Tr[fαd

→n−4−k−!

fα]Tr[d
→k

fβd
→!

fβ ]

∆ · OG3
n = Tr[Gαβ d

→n

Gαβ ]

Many Operators Contribute!
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Summary of Goals

✤ Complete a detailed study of the RG evolution of twist-4 operators, reducing the 
number of fit parameters for higher twist effects in DIS. 

✤ Through the combination of data and lattice simulations we hope to provide a good 
first step toward a systematic program of analyzing higher twist correlations in the 
nucleon.

✤ More generally, a better understanding of HT can inform electroweak observables.  
Nuclear effects must be well understood before claims of new physics can be made.
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PVDIS - Electron/Deuteron Asymmetry

X. Zheng, PAC33, January 2008

 Can extract C1,2q (and sin2θW)

Deuterium:

In the SM, tree level

PVDIS Asymmetries

APV = +

C1d!gA
e gV

d!
1
2
"
2
3
sin2 #$W %

Ad ! #540 ppm%Q2
2C1u &1'RC #x %("C1d &1'RS # x%('Y #2C2u"C2d%RV #x%

5'RS # x%'4RC #x%

C2d!gV
e gA

d!
1
2
"2sin2 #$W %

C2u!gV
e gA

u!"
1
2
'2sin2#$W %C1u!gA

e gV
u!"

1
2
'
4
3
sin2 #$W %

ARL =
σR − σL

σR + σL

✤ The focus has shifted from the SM WNC theory to detecting hints of physics 
beyond the SM

✤ 12 GeV program to begin at JLab in 2014
- Qweak
   (W.T.H. Van Oers)

- SOLID, 6 GeV, and 12, GeV experiments
   (P. Souder, P. Reimer)
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Asymmetry Uncertainty (%) vs. x (60 days at each energy, P=85%)

Figure 10: Projected data with errors for the proposed experiment.

effect depends on strongly on x but is independent of y, in contrast to physics
beyond the Standard Model. This signature will be a powerful method to
demonstrate that CSV is indeed the explanation for any deviation from the
prediction of Equation 12.

7.2 Fitting the PVDIS Data to Untangle the Physics

The observation of CSV is possible with our apparatus only if the effect
varies with x. An x-independent CSV effect would be indistinguishable from
a change in the C1’s. It is quite natural, however, to expect that the x-
dependence is similar to that shown in Figure 9, and we will make that
assumption in our further discussion.

If negligible Q2 and x dependence is observed, we will have to make
plausible assumptions about the form of the possible hadronic effects in order
to untangle the various effects of hadronic and electroweak physics. We plan

23

SOLID
✤ SOLID plans to measure the asymmetry at a percent level over a wide 

kinematic range.

Projected data with errors for SOLID     
(P. Souder)
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PVDIS - Electron/Deuteron Asymmetry

✤ Precision PVDIS must control hadronic uncertainties: TMC, CSV, sea quark 
distributions, higher twist effects.

✤ HT effects in the first term of the asymmetry are given in terms of a single four quark 
matrix element!                                                                                                                        
(Cahn-Gilman; Bjorken, Wolfenstein; Hobbs, Melnitchouk; Mantry, Musolf, Sacco)

3

neutral current (WNC), and interference of the vector EM current and axial vector WNC;

and Y1,3 are functions of Bjorken x, the kinematic variable y [see Eq.(10) below] and the

ratios Rγ and RγZ of longitudinal and transverse cross sections for purely EM and WNC-

EM vector current interference cross sections [see Eq. (14) below]. In the SM, at leading

twist and in the absence of CSV effects, the Y1 term in Eq.(2) is independent of y and

depends only on geA and the vector current coupling of the Z-boson to quarks [3]. Since

geV = −1 + 4 sin2 θW ∼ −0.1, the Y1-term dominates the asymmetry, making its scrutiny

particularly important for the interpretation of the Jefferson Lab PVDIS program.

Considerable theoretical effort has been devoted to disentangling the various contribu-

tions to the asymmetry. The effect of twist-four contributions to the asymmetry was first

considered in papers by Bjorken and Wolfenstein [17, 18] more than thirty years ago, where

it was shown to arise from a single, non-local four-quark operator in the limit of good isospin,

negligible sea-quark and CSV effects, and up to corrections in αs(Q2). Quantitative esti-

mates of twist-four effects were first obtained in [19] where the contribution of the spin-two

operators was estimated using the MIT Bag Model. This analysis was extended in [20] to

include corrections to the F3 structure function(see Eq. (13) below). More recently, twist-

four effects to the asymmetry were estimated by the authors of Ref. [21], who considered

the possibility that Rγ #= RγZ at twist-four (see Eq. (14) below). These authors argued that

such a difference could introduce hadronic uncertainties that might impede the extraction

of CSV effects from ARL.

In this paper, we draw on the observations of [17, 18] that the twist-four contribution to

the Y1 term in ARL for deuterium, given in Eq. (2), arises from a single four-quark operator

involving up- and down-quark fields

Oµν
ud(x) =

1

2
[ū(x)γµu(x)d(0)γνd(0) + (u ↔ d)] (3)

to revisit the analysis of Ref. [21]. Noting that the contribution of Oµν
ud(x) to the electroweak

structure functions satisfies the Callan-Gross relation at leading order in the strong coupling,

we find that

RγZ = Rγ and Y1 = 1, (4)

at twist-four up to perturbative corrections. Consequently, all twist-four effects entering the

dominant term in the asymmetry reside in the ratio F γZ
1 /F γ

1 .

Using the power law dependence in Q2 of the twist-four effects to the Y1-term it may be

possible, with the precision and the wide kinematic range of the PVDIS program at JLab,

to disentangle twist-four effects from CSV effects depending on their relative overall sizes.

To provide theoretical guidance for such a program, we utilize the MIT Bag Model[22] to

estimate the size and variation of the twist-four contribution with Bjorken-x and Q2 as

shown in Fig. 1. These estimates extend the earlier work of Ref. [20] by allowing for the

x-dependences of the twist-two and twist-four contributions to F γ(γZ)
1 to differ. We find that

✤ The RG evolution of four-quark operators facilitates an extraction of higher twist 
matrix elements.

ARL =
σR − σL

σR + σL
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Outline

✤ Historical Overview of Scaling Violations in QCD

✤ Theoretical Foundations

✤ Perturbative Analysis of Twist-4

✤ Preliminary Results

✤ Summary

15Wednesday, October 13, 2010



Operator Product Expansion Wilson, Phys Rev 179 (1979)

∼ LµνWµν

T{Jµ(x)Jν(0)} ∼ Γµν

∑

n,k

C(n)
k (x2)O(n)

k (0)

Wilson-Coefficient Local Operator

Optical Theorem
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Higher Twist

Figure 1: Comparison of quark-quark correlations and quark-gluon correla-
tions

Figure 2: Diagrams corresponding to DGLAP evolution. The exception is
diagram (d), which is a quark-gluon operator.
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diagram (d), which is a quark-gluon operator.

10

Twist-2

Quark-gluon correlation 

Quark-quark correlation

17Wednesday, October 13, 2010



Outline

✤ Historical Overview of Scaling Violations in QCD

✤ Theoretical Foundations

✤ Perturbative Analysis of Twist-4

✤ Preliminary Results

✤ Summary
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The Operator Basis R.L. Jaffe & M. Soldate - Phys. Rev. D V26 No.1

✤ 12 Operators appear at twist-4, which can be divided into three groups:

4-Quark

2-Quark

Gluonic

γ(n)
jk = µ

∂

∂µ
lnZ(n)

jk (43)

O(n)
ik bare =

∑

j

O(n)
ij renormalizedZ

(n)
jk (44)

! · Q1(k,l)
n = g[ψ̄R /!

←−
d l−→d kψR][ψ̄R /!

−→
d n−2−k−lψR] (45)

! · Q8(k)
n = iψ̄

←−
d k %f

−→
d n−1−kψ (46)

4

γ(n)
jk = µ

∂

∂µ
lnZ(n)

jk (43)

O(n)
ik bare =

∑

j

O(n)
ij renormalizedZ

(n)
jk (44)

! · Q1(k,l)
n = g[ψ̄R /!

←−
d l−→d kψR][ψ̄R /!

−→
d n−2−k−lψR] (45)

! · Q8(k)
n = iψ̄

←−
d k %f

−→
d n−1−kψ (46)

4

! · G(k,l)
n = Tr[fα

−→
d n−k−lfα−→d kfβ

−→
d lfβ ]
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The Anomalous Dimension Matrix

✤ The anomalous dimension takes the following form

γ ∼
(

Quark→ Glue
Glue→ Quark Glue

)
Quark

✤ The quark sector can be further decomposed

γQuark ∼
(

4Q→ 4Q 0
4Q→ 2Q 2Q→ 2Q

)

f,I Flavor/Isospin
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SU(3) - Flavor Decomposition

Jν(0)Jµ(x)

Jµ(x) = ψ̄(x)γµ 1
2

(
λ3

f +
1√
3
λ8

f

)
ψ(x) for SU(3)f

✤ Each current sits in the octet representation of SU(3)-flavor.

✤ The direct product of these octets contains multiple representations. (I3 = Y = 0)

8⊗ 8 = 27⊕ 10⊕ 1̄0⊕ 81 ⊕ 82 ⊕ 1
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Flavor Singlet Sector

γ ∼
(

Quark Quark→ Glue
Glue→ Quark Glue

)

✤ A work in progress....

(
G1 → G1 G1 → G2

G2 → G1 G2 → G2

)

f,I

γGlue ∼

+

+ . . .
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Four Quark Sector: 27-Plet (Gottlieb, Okawa)

✤ Large, but sparse matrix:





0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









Q̃1

Q̃2

Q̃3

Q̃4

Q̃5

Q̃6





27,I

γ27
I ∼

QCD Equations 
Of

Motion

Q̃27,I ∼
∑

f

Cf

(
ψ̄L,RΓµψL,R

)
f

(
ψ̄L,RΓνψL,R

)
f
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Outline

✤ Historical Overview of Scaling Violations in QCD

✤ Theoretical Foundations

✤ Perturbative Analysis of Twist-4

✤ Preliminary Results

✤ Summary
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Running of 27, I=1 Preliminary

✤ As a simplistic example, consider just the exponential factor

Mn

(
Q2

)
≈

∑

i

(
1

Q2

) τ−2
2

c̃n
j

(
Q2, g(t), µ

)
exp

[
−

∫ t

0
γ(n)

ij (ḡ(t′))dt′
]
An

i

✤ Diagonalize gamma, giving a linear combination of  6 operators and 6  
eigenvalues 

Ci(Q2)Oi(Q2)
Ci(Q2

0)Oi(Q2
0)
∼ exp

[
−

∫ t

0
γj(ḡ(t′))dt′

]
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Running of Wilson-Coefficients Preliminary

Q2

γ4

γ6

Mn

(
Q2

)
≈

∑

i

(
1

Q2

) τ−2
2

c̃n
j

(
Q2, g(t), µ

)
exp

[
−

∫ t

0
γ(n)

ij (ḡ(t′))dt′
]
An

i

Ci(Q2)Oi(Q2)
Ci(Q2

0)Oi(Q2
0)
∼ exp

[
−

∫ t

0
γj(ḡ(t′))dt′

]

Out[7052]=

1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

Ci(Q2)Oi(Q2)
Ci(Q2

0)Oi(Q2
0)

γ1 = 7.027

γ6 = 0.3185

Leading Moment (n=2)
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Outlook

✤ Complete the singlet sector of the twist-4 anomalous dimension.

✤ Include tree level Wilson Coefficients for the full anomalous 
dimension.

✤ Provide a detailed analysis of the RG evolution of twist four.

✤ In the future, we hope to extend this analysis to higher moments.

✤ Can be done using non-local operator renormalization technique - 
Balitsky, Braun et al. Nuc Phys B 807, 2009.
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Summary

✤ We hope that these calculations combined with lattice estimates of 
twist four matrix elements will provide a complete program for 
systematic study of higher twist.

✤ RG analysis of twist four can aid in extractions of twist-4 matrix 
elements.

✤ The higher moments, sensitive to higher x, are accessible using non-
local operator renormalization.

✤ Please stay tuned for future results!
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Thank you!
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Backup Slides
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Quark Mixing: Flavor Octet

γQuark ∼

+ +

(ψ̄Q2ψ)(ψ̄ψ) (ψ̄Q2ψ)

✤ The SU(3)-flavor reduction provides a nice way to organize the quark mixings.

(
4Q→ 4Q 0
2Q→ 4Q 2Q→ 2Q

)

f,I

(ψ̄Qψ)(ψ̄Qψ)

✤ Mixings among two/four quark operators are more involved.

ψ̄Qψ ψ̄Qψ =
√

2
3
O27

I=2 +
2√
10

O27
I=1 +

2√
30

O27
I=0 +

2√
15

O81
I=1 +

2
3
√

5O81
I=0

−
√

2
3

O1
I=0

Example Analysis
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